Making Go/No-go decision in proof-of-concept trials

By Fenguoerbian

December 8, 2023

The gonogo package

The goal of gonogo is to provide Go/Nogo designs for binary (e.g. ORR) or TTE (e.g. PFS) outcomes.

Supported designs and endpoints

Design Endpoint Support
SAT Binary Yes
SAT TTE Yes
SAT Continuous TBA
RCT Binary TBA
RCT TTE TBA
RCT Continuous TBA

Example - Go/Nogo design based on ORR

This is a basic example which shows you how to design go/nogo rule based on ORR. For more details about this example, please see vignette("ORR_Gonogo", package = "gonogo").

library(gonogo)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
nmax <- 40
n1 <- 20
eff_cut <- 0.55
fut_cut <- 0.45
fa_eff_pt <- 0.6
fa_fut_pt <- 0.5
a <- 1
b <- 1
  • The total sample size at final analysis is 40.
  • The sample size at interim analysis is 20.
  • The efficacy boundary of ORR is 0.55.
  • The futility boundary of ORR is 0.45.
  • The (posterior) probability target/threshold of efficacy is 0.6. We declare efficacy if Pr(ORR > 0.55 | Data) > 0.6.
  • The (posterior) probability target/threshold of futility is 0.5. We declare futility if Pr(ORR < 0.45 | Data) > 0.5.
  • Prior distribution of ORR is Beta(1, 1).

About our hypothetical product, we have the following information:

tpp_tb <- tibble::tribble(
    ~theta, ~tpp,
    0.45, "SOC",
    0.55, "TPP base",
    0.60, "TPP best"
)
theta_pick <- c(0.45, 0.5, 0.55, 0.6)    # theta(underlying ORR) we might be interested

Rules at interim analysis

ia_eff_pt <- 0.5
ia_fut_pt <- 0.01

ia_rules <- Find_Cut(
    nmax = nmax, n1 = n1, m = m, 
    pt = fa_eff_pt, theta0 = eff_cut, 
    eff_cut = eff_cut, fut_cut = fut_cut, 
    eff_pt = ia_eff_pt, fut_pt = ia_fut_pt, 
    a = a, b = b
)

If we set the rules to Go if predictive probability greater than 0.5 and to Nogo if predictive probability less than 0.01. Then we can determine the cut value for Go/Nogo as:

  • Declare Go if #resp is equal to or greater than 12.
  • Declare Nogo if #resp is equal to or less than 7.

Given this rule, we can compute the operating characteristics (OC) table for various observed ORR

oc_tab_s1 <- t(sapply(theta_pick, function(orr, n, go_cut, nogo_cut){
    res <- ORR_Go_Nogo(n = n, orr = orr, go_cut = go_cut, nogo_cut = nogo_cut)
    res <- format(res, visable = FALSE)
}, 
n = n1, 
go_cut = as.integer(ia_rules["go_cut"]), 
nogo_cut = as.integer(ia_rules["nogo_cut"])))

knitr::kable(oc_tab_s1)
Underlying_ORR Pr_Go Pr_Nogo Pr_Equivocal
45.00% 13.1% 25.2% 61.7%
50.00% 25.2% 13.2% 61.7%
55.00% 41.4% 5.8% 52.8%
60.00% 59.6% 2.1% 38.3%

We can also show OC figures of different rules

rules <- data.frame(
    gocut = c(ia_rules["go_cut"], ia_rules["go_cut"] - 1, ia_rules["go_cut"] + 1),
    nogocut = c(ia_rules["nogo_cut"], ia_rules["nogo_cut"] + 1, ia_rules["nogo_cut"] - 1),
    n = n1
)

oc_fig_s1 <- OC_Curve_Diff_Rules(rules, theta_pick,
                                 tpp_tb = tpp_tb,
                                 plot_params = list(
                                     contour_vec = seq(from = 0.25, to = 1, by = 0.25)))
oc_fig_s1

Rules at final analysis

fa_rules <- Find_Cut(
    nmax = nmax, n1 = nmax, m = m, 
    pt = fa_eff_pt, theta0 = eff_cut, 
    eff_cut = eff_cut, fut_cut = fut_cut, 
    eff_pt = fa_eff_pt, fut_pt = fa_fut_pt, 
    a = a, b = b
)

If we set the rules to Go if posterior Pr(ORR > 0.55) is greater than 0.6 and to Nogo if posterior Pr(ORR <= 0.45) is less than 0.5. Then we can determine the cut value for Go/Nogo as:

  • Declare Go if #resp is equal to or greater than 23.
  • Declare Nogo if #resp is equal to or less than 17.

Given this rule, we can compute the operating characteristics (OC) table for various observed ORR

oc_tab_s2 <- t(sapply(theta_pick, function(orr, n, go_cut, nogo_cut){
    res <- ORR_Go_Nogo(n = n, orr = orr, go_cut = go_cut, nogo_cut = nogo_cut)
    res <- format(res, visable = FALSE)
}, 
n = nmax, 
go_cut = as.integer(fa_rules["go_cut"]), 
nogo_cut = as.integer(fa_rules["nogo_cut"])))

knitr::kable(oc_tab_s2)
Underlying_ORR Pr_Go Pr_Nogo Pr_Equivocal
45.00% 7.7% 43.9% 48.4%
50.00% 21.5% 21.5% 57.0%
55.00% 43.9% 7.7% 48.4%
60.00% 68.9% 1.9% 29.3%

We can also show OC figures of different rules

rules <- data.frame(
    gocut = c(fa_rules["go_cut"], fa_rules["go_cut"] - 1, fa_rules["go_cut"] + 1),
    nogocut = c(fa_rules["nogo_cut"], fa_rules["nogo_cut"] + 1, fa_rules["nogo_cut"] - 1),
    n = nmax
)

oc_fig_s2 <- OC_Curve_Diff_Rules(rules, theta_pick,
                                 tpp_tb = tpp_tb,
                                 plot_params = list(
                                     contour_vec = seq(from = 0.25, to = 1, by = 0.25)))
oc_fig_s2

This shows the marginal OC, i.e. it does not consider any previous stages’ rules’ impact on current stage. We can also compute the conditional/cumulative OC of current stage as

current_rules <- data.frame(
    gocut = c(fa_rules["go_cut"], fa_rules["go_cut"] - 1, fa_rules["go_cut"] + 1),
    nogocut = c(fa_rules["nogo_cut"], fa_rules["nogo_cut"] + 1, fa_rules["nogo_cut"] - 1),
    n = nmax - n1    # sample size of current stage
)

previous_rules <- data.frame(
    cum_num = n1, 
    stage_num = n1, 
    go_cut = as.integer(ia_rules["go_cut"]), 
    nogo_cut = as.integer(ia_rules["nogo_cut"])
)

if(nrow(previous_rules) > 0){
    print("The previous rules are: ")
    knitr::kable(previous_rules)
}
#> [1] "The previous rules are: "
cum_num stage_num go_cut nogo_cut
20 20 12 7

oc_fig_s2 <- OC_Curve_Diff_Rules2(current_rules, theta_pick,
                                  tpp_tb = tpp_tb,
                                  previous_full_rules = previous_rules, 
                                  plot_params = list(
                                      contour_vec = seq(from = 0.25, to = 1, by = 0.25)))

cowplot::plot_grid(plotlist = oc_fig_s2$gplot_list, 
                   nrow = 1)
#> Warning: Removed 6 rows containing missing values or values outside the scale range
#> (`geom_line()`).

The proposed go/nogo rules at this stage are:

  • Declare Go if #resp is equal to or greater than 23.
  • Declare Nogo if #resp is equal to or less than 17.

And different types of OC at our interested theta are

detail_data <- oc_fig_s2$detail_data %>%
    filter(pick, 
           stage_idx == 2, 
           gocut == fa_rules["go_cut"], 
           nogocut == fa_rules["nogo_cut"])

prob_type_vec <- detail_data %>%
    distinct(prob_type) %>%
    pull(prob_type)

for(prob_type in prob_type_vec){
    detail_data %>%
        filter(prob_type == .env$prob_type) %>%
        arrange(theta) %>%
        select(theta, prob_type, prob_go, prob_nogo, prob_equivocal) %>%
        mutate(across(c(prob_go, prob_nogo, prob_equivocal), 
                      .fns = \(x) paste0(round(x * 100, digits = 1), "%"))) %>%
        knitr::kable(
            caption = paste0(
                toupper(substr(prob_type, start = 1, stop = 1)), 
                substr(prob_type, start = 2, stop = nchar(prob_type)), 
                " OC probabilities")
        ) %>%
        print()
    cat('\n\n<!-- -->\n\n')
}
theta prob_type prob_go prob_nogo prob_equivocal
0.45 marginal 7.7% 43.9% 48.4%
0.50 marginal 21.5% 21.5% 57%
0.55 marginal 43.9% 7.7% 48.4%
0.60 marginal 68.9% 1.9% 29.3%

Marginal OC probabilities

theta prob_type prob_go prob_nogo prob_equivocal
0.45 conditional 4.8% 36.4% 58.8%
0.50 conditional 12.2% 19.8% 68%
0.55 conditional 25.2% 8.8% 66%
0.60 conditional 43.3% 3.1% 53.5%

Conditional OC probabilities

theta prob_type prob_go prob_nogo prob_equivocal
0.45 cumulative 16% 47.7% 36.3%
0.50 cumulative 32.7% 25.4% 41.9%
0.55 cumulative 54.7% 10.5% 34.8%
0.60 cumulative 76.2% 3.3% 20.5%

Cumulative OC probabilities

Example - Go/Nogo design based on PFS

Note: The functions for TTE Go/Nogo deisgn is still under development and optimization. Hence are subject to change.

Please refer to PFS Go/Nogo vignette for a more detailed example.

Some packages that are needed for this example

# library(gonogo)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggrepel)
# require(cowplot)
# require(survival)
library(future.apply)
#> Loading required package: future
library(progressr)

# number of parallel cores, 
# please adjust according to your machine's capability
# current setting is to leave (at most) 2 cores not used, since the function
#   is guaranteed to return at least 1 core for later parallel computation.
worker_num <- parallelly::availableCores(omit = 2)
plan(cluster, workers = worker_num)    

# progress info report settings 
handlers("cli")
progress_interval <- 50

# fix the seed for random number generation
# Note that later the RNG kind will be set to a parallel safe one
random_seed <- 1024

Basic setups

First we setup the basic settings for this PFS Go/Nogo design case. We begin with settings of this trial:

# 1st is the setting of this trial
basic_settings <- list(
    max_subj_num = 40, 
    # accrual_rate = 40 / 5, 
    accrual_time = 5, 
    n1 = 20,    # number of subjects in stage1
    wait_after_n1 = 0,    # time to wait after `n1` subjects being enrolled
    # cut_date = 9 + 2 + 5,    # cutoff date = actrual accrual_time +  wait time + followup time
    cut_evt_num  = NULL, # event number target to determine cutoff date. If `cut_date` is NULL, `cut_evt_num` will be used.
    rate_diff_at = 6, 
    followup_time = 6
)
(basic_settings <- gonogo:::Get_Settings(basic_settings, type = 1))
#> $max_subj_num
#> [1] 40
#> 
#> $accrual_time
#> [1] 5
#> 
#> $n1
#> [1] 20
#> 
#> $wait_after_n1
#> [1] 0
#> 
#> $cut_evt_num
#> NULL
#> 
#> $rate_diff_at
#> [1] 6
#> 
#> $followup_time
#> [1] 6
#> 
#> $accrual_rate
#> [1] 8
#> 
#> $cut_date
#> [1] 11

Next we setup the underlying PFS distribution, droput rate and prior information

pfs_settings <- list(
    m_ref = 7,    # median reference PFS time
    m_trt = 9.5,    # pfs_m_ctrl, 
    trt_dropout = 0.1,    # annual pfs dropout rate
    piecewise_trt = FALSE
)

pfs_prior_shape <- 0.001
pfs_prior_rate <- 0.001

(pfs_settings <- gonogo:::Get_Settings(pfs_settings, type = 2, 
                                       prior_shape = pfs_prior_shape, 
                                       prior_rate = pfs_prior_rate))
#> $m_ref
#> [1] 7
#> 
#> $m_trt
#> [1] 9.5
#> 
#> $trt_dropout
#> [1] 0.1
#> 
#> $piecewise_trt
#> [1] FALSE
#> 
#> $hazard
#> [1] 0.07296286
#> 
#> $ref_hazard
#> [1] 0.09902103
#> 
#> $dropout_lambda
#> [1] 0.008780043
#> 
#> $prior_shape
#> [1] 0.001
#> 
#> $prior_rate
#> [1] 0.001

Thirdly is the setting of Go/Nogo design rules

# General idea:
#   Declare Go if Pr(lambda <= lam_eff_cut) >= go_prob_target
#   Declare Nogo if Pr(lambda > lam_fut_cut) >= nogo_prob_target
# Additionaly, for this case, we set `use_evt_cut = TRUE`
#   Directly declare go when number of events at analysis <= go_evt_target
#   Directly declare nogo when number of events at analysis >= nogo_evt_target
#
# Besides the Bayesian perspective, we also set a frequenter's perspective. The
#   rule is based on 6M landmark pfs rate and the detailed rule is based on 
#   confidence interval of 6M PFS rate.
go_nogo_settings <- list(
    lam_eff_cut = pfs_settings$hazard, 
    lam_fut_cut = pfs_settings$ref_hazard, 
    go_prob_target = 0.67, 
    nogo_prob_target = 0.1, 
    use_evt_cut = TRUE, 
    go_evt_target = 13, 
    nogo_evt_target = 27, 
    pfs_rate_diff_at = 6, 
    pfs_rate_eff_cut = 2 ^ (-6 / pfs_settings$m_trt), 
    pfs_rate_fut_cut = 2 ^ (-6 / pfs_settings$m_ref), 
    pfs_rate_go_prob_target = 0.67, 
    pfs_rate_nogo_prob_target = 0.1, 
    pfs_rate_use_evt_cut = TRUE, 
    pfs_rate_go_evt_target = 13, 
    pfs_rate_nogo_evt_target = 27 
)

Find the rules

In this section, we compute the detailed Go/Nogo rule (without considering the “direct event number cut” mentioned in the previous section) and visualize it. Given the observed number of events, declare go if total obs time is long enough, declare nogo if total obs time is short enough. This is based on posterior distribution of lambda, the hazard parameter in exponential distribution.

pfs_rules <- PFS_Find_Cut(basic_settings, pfs_settings, go_nogo_settings, 
                          start_evt_num = 1)

We can print the rules as follow:

knitr::kable(pfs_rules$rules_tb)
evt_num sum_obs_time_Declare Go sum_obs_time_Declare Nogo pprob_Declare Go pprob_Declare Nogo
40 583 487 0.6719576 0.1016475
39 569 476 0.6727396 0.1013377
38 555 465 0.6735663 0.1009883
37 540 454 0.6702923 0.1005965
36 526 443 0.6711685 0.1001596
35 512 431 0.6720976 0.1022650
34 498 420 0.6730835 0.1017509
33 484 409 0.6741306 0.1011819
32 469 398 0.6707997 0.1005539
31 455 386 0.6719236 0.1026000
30 441 375 0.6731220 0.1018642
29 427 364 0.6744012 0.1010553
28 412 353 0.6710334 0.1001677
27 398 341 0.6724242 0.1020881
26 384 330 0.6739164 0.1010471
25 369 318 0.6705182 0.1029149
24 355 307 0.6721598 0.1016894
23 341 296 0.6739326 0.1003455
22 326 284 0.6705354 0.1020262
21 312 273 0.6725148 0.1004346
20 298 261 0.6746700 0.1019678
19 283 250 0.6713315 0.1000703
18 269 238 0.6737847 0.1013941
17 254 226 0.6704768 0.1026417
16 240 215 0.6733147 0.1001421
15 225 203 0.6700908 0.1010408
14 211 191 0.6734414 0.1017772
13 196 179 0.6703922 0.1023101
12 182 167 0.6744539 0.1025873
11 167 155 0.6717405 0.1025420
10 153 143 0.6768419 0.1020872
9 138 131 0.6747704 0.1011083
8 123 118 0.6729814 0.1042777
7 108 106 0.6716217 0.1018848
6 93 93 0.6709305 0.1036424
5 78 80 0.6713222 0.1042758
4 63 67 0.6735784 0.1030077
3 48 53 0.6793653 0.1053436
2 32 39 0.6768458 0.1023550
1 16 23 0.6884549 0.1027089

We can also visualize the rules at different number of events

cowplot::plot_grid(plotlist = pfs_rules$gplot_list, 
                   ncol = 4)

OC Curves

Note: Remember to adjust the oc_params_sim$sim_num in your real usage. For this readme, it is set to a quite small value to ease the computation burden.

mpfs_pick <- c(7.0, 9.5, 11.0)    # m-PFS highlighted in the figures
tpp_tb <- tribble(    # additional info of some picked mPFS
    ~mpfs, ~tpp, 
    7.0, "SOC", 
    9.5, "TPP base", 
    11.0, "TPP best"
)

oc_params <- list(
    mpfs_vec = seq(from = 1, to = 30, length.out = 250),
    sim_num = 0
)

oc_params_sim <- oc_params
oc_params_sim$sim_num <- 500
oc_params_sim$mpfs_vec <- seq(from = 5, to = 15, length.out = 25)


plot_params <- list(
    contour_vec = seq(from = 0.25, to = 1, by = 0.25), 
    use_smooth = FALSE)

Then we setup some rules, by “rules” we mean the data cutoff rule. Either X months after LPI, or the time when Y number of events are observed. Since we are investigating OC of this Go/Nogo design, the “rules” also include how the Go/Nogo rules are designed under various scenarios.

followup_time_vec <- c(6, 9, 12, NA)
cut_evt_num_vec <- c(20, 24, 28, NA)
rules_df1 <- expand.grid(
    followup_time = followup_time_vec, 
    cut_evt_num = cut_evt_num_vec
) %>%
    filter((is.na(followup_time) & !is.na(cut_evt_num)) | (is.na(cut_evt_num) & !is.na(followup_time))) %>%
    mutate(kickoff = if_else(is.na(followup_time), 
                             paste0("event num at ", cut_evt_num), 
                             paste0(followup_time, "m after LPI")), 
           idx = row_number(), 
           idx = c(1 : (length(followup_time_vec) - 1), 1 : (length(cut_evt_num_vec) - 1))
           ) %>%
    mutate(go_evt_target = c(rep(0, 3), 13, 17, 20), 
           nogo_evt_target = c(rep(40, 3), 27, 31, 34))

rules_df2 <- tribble(
    ~idx, ~lam_eff_cut, ~lam_fut_cut, ~go_prob_target, ~nogo_prob_target, 
    1, log(2) / 10.0, log(2) / 7.0, 0.5, 0.5, 
    2, log(2) / 9.5, log(2) / 7.0, 0.67, 0.1, 
    3, log(2) / 9.5, log(2) / 7.0, 0.5, 0.15, 
    4, log(2) / 7.0, log(2) / 7.0, 0.9, 0.1,     # BOP2: `lam_eff_cut` and `lam_fut_cut` are the same, `go_prob_target` + `nogo_prob_target` = 1
    # 5, log(2) / 10.3, log(2) / 8.2, 0.5, 0.2
) %>%
    mutate(
        mpfs_eff_cut = log(2) / lam_eff_cut, 
        mpfs_fut_cut = log(2) / lam_fut_cut, 
        rules = paste0("Go if Pr(mPFS > ", 
                       sprintf("%.1f", mpfs_eff_cut), 
                       ") > ", 
                       sprintf("%.2f", go_prob_target), 
                       ".\nNogo if Pr(mPFS > ", 
                       sprintf("%.1f", mpfs_fut_cut), 
                       ") < ", 
                       sprintf("%.2f", 1 - nogo_prob_target), "\n"), 
        rules = if_else(idx == 4, 
                        paste0("BOP2: Go if Pr(mPFS > ", 
                               sprintf("%.1f", mpfs_eff_cut), 
                               ") > ", 
                               sprintf("%.2f", go_prob_target), 
                               ".\n        Nogo if Pr(mPFS > ", 
                               sprintf("%.1f", mpfs_fut_cut), 
                               ") < ", 
                               sprintf("%.2f", 1 - nogo_prob_target), "\n"), 
                        rules)) %>%
    mutate(go_evt_target = 0, 
           nogo_evt_target = 40)

rules_df <- bind_rows(rules_df1, rules_df2)
followup_time cut_evt_num kickoff idx go_evt_target nogo_evt_target lam_eff_cut lam_fut_cut go_prob_target nogo_prob_target mpfs_eff_cut mpfs_fut_cut rules
NA 20 event num at 20 1 0 40 NA NA NA NA NA NA NA
NA 24 event num at 24 2 0 40 NA NA NA NA NA NA NA
NA 28 event num at 28 3 0 40 NA NA NA NA NA NA NA
6 NA 6m after LPI 1 13 27 NA NA NA NA NA NA NA
9 NA 9m after LPI 2 17 31 NA NA NA NA NA NA NA
12 NA 12m after LPI 3 20 34 NA NA NA NA NA NA NA
NA NA NA 1 0 40 0.069 0.099 0.50 0.50 10.0 7 Go if Pr(mPFS > 10.0) > 0.50.
Nogo if Pr(mPFS > 7.0) < 0.50
NA NA NA 2 0 40 0.073 0.099 0.67 0.10 9.5 7 Go if Pr(mPFS > 9.5) > 0.67.
Nogo if Pr(mPFS > 7.0) < 0.90
NA NA NA 3 0 40 0.073 0.099 0.50 0.15 9.5 7 Go if Pr(mPFS > 9.5) > 0.50.
Nogo if Pr(mPFS > 7.0) < 0.85
NA NA NA 4 0 40 0.099 0.099 0.90 0.10 7.0 7 BOP2: Go if Pr(mPFS > 7.0) > 0.90.
Nogo if Pr(mPFS > 7.0) < 0.90

We can draw the theoretical OC curve

oc_fig_theory <- gonogo:::PFS_OC_Curve_Diff_Rules(rules_df[-(1 : nrow(rules_df1)), ], 
                                         mpfs_pick = mpfs_pick, 
                                         basic_settings = basic_settings, 
                                         pfs_settings = pfs_settings, 
                                         go_nogo_settings = go_nogo_settings, 
                                         tpp_tb = tpp_tb, 
                                         oc_params = oc_params, 
                                         plot_params = plot_params)
#>                                                    followup_time 
#>                                                               NA 
#>                                                      cut_evt_num 
#>                                                               NA 
#>                                                          kickoff 
#>                                                               NA 
#>                                                              idx 
#>                                                              "1" 
#>                                                    go_evt_target 
#>                                                              "0" 
#>                                                  nogo_evt_target 
#>                                                             "40" 
#>                                                      lam_eff_cut 
#>                                                     "0.06931472" 
#>                                                      lam_fut_cut 
#>                                                     "0.09902103" 
#>                                                   go_prob_target 
#>                                                           "0.50" 
#>                                                 nogo_prob_target 
#>                                                           "0.50" 
#>                                                     mpfs_eff_cut 
#>                                                           "10.0" 
#>                                                     mpfs_fut_cut 
#>                                                              "7" 
#>                                                            rules 
#> "Go if Pr(mPFS > 10.0) > 0.50.\nNogo if Pr(mPFS > 7.0) < 0.50\n" 
#>                                                   followup_time 
#>                                                              NA 
#>                                                     cut_evt_num 
#>                                                              NA 
#>                                                         kickoff 
#>                                                              NA 
#>                                                             idx 
#>                                                             "2" 
#>                                                   go_evt_target 
#>                                                             "0" 
#>                                                 nogo_evt_target 
#>                                                            "40" 
#>                                                     lam_eff_cut 
#>                                                    "0.07296286" 
#>                                                     lam_fut_cut 
#>                                                    "0.09902103" 
#>                                                  go_prob_target 
#>                                                          "0.67" 
#>                                                nogo_prob_target 
#>                                                          "0.10" 
#>                                                    mpfs_eff_cut 
#>                                                          " 9.5" 
#>                                                    mpfs_fut_cut 
#>                                                             "7" 
#>                                                           rules 
#> "Go if Pr(mPFS > 9.5) > 0.67.\nNogo if Pr(mPFS > 7.0) < 0.90\n" 
#>                                                   followup_time 
#>                                                              NA 
#>                                                     cut_evt_num 
#>                                                              NA 
#>                                                         kickoff 
#>                                                              NA 
#>                                                             idx 
#>                                                             "3" 
#>                                                   go_evt_target 
#>                                                             "0" 
#>                                                 nogo_evt_target 
#>                                                            "40" 
#>                                                     lam_eff_cut 
#>                                                    "0.07296286" 
#>                                                     lam_fut_cut 
#>                                                    "0.09902103" 
#>                                                  go_prob_target 
#>                                                          "0.50" 
#>                                                nogo_prob_target 
#>                                                          "0.15" 
#>                                                    mpfs_eff_cut 
#>                                                          " 9.5" 
#>                                                    mpfs_fut_cut 
#>                                                             "7" 
#>                                                           rules 
#> "Go if Pr(mPFS > 9.5) > 0.50.\nNogo if Pr(mPFS > 7.0) < 0.85\n" 
#>                                                                 followup_time 
#>                                                                            NA 
#>                                                                   cut_evt_num 
#>                                                                            NA 
#>                                                                       kickoff 
#>                                                                            NA 
#>                                                                           idx 
#>                                                                           "4" 
#>                                                                 go_evt_target 
#>                                                                           "0" 
#>                                                               nogo_evt_target 
#>                                                                          "40" 
#>                                                                   lam_eff_cut 
#>                                                                  "0.09902103" 
#>                                                                   lam_fut_cut 
#>                                                                  "0.09902103" 
#>                                                                go_prob_target 
#>                                                                        "0.90" 
#>                                                              nogo_prob_target 
#>                                                                        "0.10" 
#>                                                                  mpfs_eff_cut 
#>                                                                        " 7.0" 
#>                                                                  mpfs_fut_cut 
#>                                                                           "7" 
#>                                                                         rules 
#> "BOP2: Go if Pr(mPFS > 7.0) > 0.90.\n        Nogo if Pr(mPFS > 7.0) < 0.90\n"
oc_fig_theory$gplot

We can draw the OC curve under different data cutoff rules.

First is data cut at different number of observed events:

set.seed(random_seed, kind = "L'Ecuyer-CMRG")
oc_fig <- gonogo:::PFS_OC_Curve_Diff_Rules(rules_df[1 : (length(cut_evt_num_vec) - 1), ], 
                                  mpfs_pick = mpfs_pick, 
                                  basic_settings = basic_settings, 
                                  pfs_settings = pfs_settings, 
                                  go_nogo_settings = go_nogo_settings, 
                                  tpp_tb = tpp_tb, 
                                  oc_params = oc_params_sim,
                                  plot_params = plot_params)
#>     followup_time       cut_evt_num           kickoff               idx 
#>                NA              "20" "event num at 20"               "1" 
#>     go_evt_target   nogo_evt_target       lam_eff_cut       lam_fut_cut 
#>               "0"              "40"                NA                NA 
#>    go_prob_target  nogo_prob_target      mpfs_eff_cut      mpfs_fut_cut 
#>                NA                NA                NA                NA 
#>             rules 
#>                NA 
#>     followup_time       cut_evt_num           kickoff               idx 
#>                NA              "24" "event num at 24"               "2" 
#>     go_evt_target   nogo_evt_target       lam_eff_cut       lam_fut_cut 
#>               "0"              "40"                NA                NA 
#>    go_prob_target  nogo_prob_target      mpfs_eff_cut      mpfs_fut_cut 
#>                NA                NA                NA                NA 
#>             rules 
#>                NA 
#>     followup_time       cut_evt_num           kickoff               idx 
#>                NA              "28" "event num at 28"               "3" 
#>     go_evt_target   nogo_evt_target       lam_eff_cut       lam_fut_cut 
#>               "0"              "40"                NA                NA 
#>    go_prob_target  nogo_prob_target      mpfs_eff_cut      mpfs_fut_cut 
#>                NA                NA                NA                NA 
#>             rules 
#>                NA

plot_params2 <- oc_fig$plot_params
plot_params2$use_smooth <- TRUE
oc_fig_smooth <- gonogo:::PFS_OC_Curve_Draw(oc_fig$detail_data, 
                               tpp_tb = tpp_tb, 
                               plot_params = plot_params2)

oc_fig$gplot
oc_fig_smooth
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Second is data cut at different time after LPI:

set.seed(random_seed, kind = "L'Ecuyer-CMRG")
oc_fig <- gonogo:::PFS_OC_Curve_Diff_Rules(rules_df[(1 : (length(followup_time_vec) - 1)) + (length(cut_evt_num_vec) - 1), ], 
                                  mpfs_pick = mpfs_pick, 
                                  basic_settings = basic_settings, 
                                  pfs_settings = pfs_settings, 
                                  go_nogo_settings = go_nogo_settings, 
                                  tpp_tb = tpp_tb, 
                                  oc_params = oc_params_sim,
                                  plot_params = plot_params)
#>    followup_time      cut_evt_num          kickoff              idx 
#>             " 6"               NA   "6m after LPI"              "1" 
#>    go_evt_target  nogo_evt_target      lam_eff_cut      lam_fut_cut 
#>             "13"             "27"               NA               NA 
#>   go_prob_target nogo_prob_target     mpfs_eff_cut     mpfs_fut_cut 
#>               NA               NA               NA               NA 
#>            rules 
#>               NA 
#>    followup_time      cut_evt_num          kickoff              idx 
#>             " 9"               NA   "9m after LPI"              "2" 
#>    go_evt_target  nogo_evt_target      lam_eff_cut      lam_fut_cut 
#>             "17"             "31"               NA               NA 
#>   go_prob_target nogo_prob_target     mpfs_eff_cut     mpfs_fut_cut 
#>               NA               NA               NA               NA 
#>            rules 
#>               NA 
#>    followup_time      cut_evt_num          kickoff              idx 
#>             "12"               NA  "12m after LPI"              "3" 
#>    go_evt_target  nogo_evt_target      lam_eff_cut      lam_fut_cut 
#>             "20"             "34"               NA               NA 
#>   go_prob_target nogo_prob_target     mpfs_eff_cut     mpfs_fut_cut 
#>               NA               NA               NA               NA 
#>            rules 
#>               NA

plot_params2 <- oc_fig$plot_params
plot_params2$use_smooth <- TRUE
oc_fig_smooth <- gonogo:::PFS_OC_Curve_Draw(oc_fig$detail_data, 
                               tpp_tb = tpp_tb, 
                               plot_params = plot_params2)

oc_fig$gplot
oc_fig_smooth
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Future work

  • (WIP) Add function for Go/Nogo design based on TTE end point.

  • (Suspend) Use vctrs to construct output class.

  • (WIP) Add rmarkdown report template and shiny app for different endpoints.

Posted on:
December 8, 2023
Length:
16 minute read, 3259 words
Tags:
R Go/No-go ORR PFS
See Also:
Evaluate BLRM using `BLRMeval`
Go/No-go design based on dual-criterion
Go/No-go design based on dual-criterion